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CenterTrack3D: Improved
CenterTrack More Suitable
for Three-Dimensional Objects
Compared with two-dimensional (2D) multi-object tracking (MOT) algorithms, three-
dimensional (3D) multi-object tracking algorithms have more research significance and
broad application prospects in the unmanned vehicles research field. Aiming at the
problem of 3D multi-object detection and tracking, in this paper, the multi-object tracker
CenterTrack, which focuses on 2D multi-object tracking task while ignoring object 3D
information, is improved mainly from two aspects of detection and tracking, and the
improved network is called CenterTrack3D. In terms of detection, CenterTrack3D uses
the idea of attention mechanism to optimize the way that the previous-frame image and
the heatmap of previous-frame tracklets are added to the current-frame image as input,
and second convolutional layer of the hm output head is replaced by dynamic convolution
layer, which further improves the ability to detect occluded objects. In terms of tracking, a
cascaded data association algorithm based on 3D Kalman filter is proposed to make full use
of the 3D information of objects in the image and increase the robustness of the 3D multi-
object tracker. The experimental results show that, compared with the original CenterTrack
and the existing 3D multi-object tracking methods, CenterTrack3D achieves 88.75%MOTA
for cars and 59.40% MOTA for pedestrians and is very competitive on the KITTI tracking
benchmark test set. [DOI: 10.1115/1.4050863]

Keywords: object detection, multi-object tracking, 3D Kalman filter, data association
algorithm, artificial intelligence, vehicle autonomy

1 Introduction
In recent years, multi-object tracking has become a research

hotspot in the field of computer vision. Multi-object tracking
(MOT) aims to solve the problem of locating and tracking multiple
objects in a given video sequence, and the number and categories
of these objects are unknown [1]. With the rise of powerful deep-
learning-based object detectors, multi-object tracking algorithms
based on the tracking-by-detection mode have gradually emerged.
They are mostly composed of three parts: object detector, object
appearance feature modeling, and data association. These methods
make full use of the ability of object detector based on deep
network and associate the detected objects of interest through time
by using the data association algorithm with the feature of objects
as the measurement. The same objects in each frame finally form
their own tracklets [2]. But these multi-object trackers based on
best-performing detectors also have some inherent disadvantages.
These trackers require a complex association strategy or a feature
extraction and fusion algorithm which costs a lot of time and space.
Recently, there has been somework on combiningobject detection

and tracking tasks into a unified network. The specific implemen-
tation method is to extend the existing object detector into a multi-
object tracker, which has made great achievements in reducing the
complexity of the multi-object trackers mentioned above. For
example, Zhou et al. proposed a point-based multi-object tracker
CenterTrack [3]. According to the center offset between adjacent

frames predicted by CenterTrack, greedy matching algorithm is
used to match objects detected in each frame with the closed
unmatched object in the prior frame in descending order of confi-
dence score. CenterTrack mainly builds on CenterNet by adding
additional four input channels and two output channels, which are
used to input the previous-frame image and the heatmap of previous-
frame tracklets and predict the inter-frame center offset vector. Com-
pared with CenterNet, CenterTrack only adds little time and space
computational cost. In addition, because CenterNet can be easily
expanded into a three-dimensional (3D) object detector [4], Center-
Track also has a certain 3D multi-object tracking ability after
simple expansion.
In this paper, we focus on 3D multi-object detection and tracking,

but CenterTrack’s tracking strategy for 3D objects is completely
consistent with two-dimensional (2D) objects, and no relevant opti-
mizations have been made for 3D objects. To deal with this
problem, we optimize detection and data association part of Center-
Track, referred to as CenterTrack3D. Our experiment was con-
ducted on KITTI tracking benchmark dataset. CenterTrack3D
performs better than the original CenterTrack and other published
work in 3D multi-object tracking task and achieves 88.75%
MOTA for cars and 59.40% MOTA for pedestrians on the KITTI
tracking benchmark test set.
To summarize, our contributions are as follows:

(1) For 3D object detection, CenterTrack3D first uses the idea of
attention mechanism to optimize the way in which the
previous-frame image and the heatmap of previous-frame
tracklets are added to the current-frame image as input. Then,
the second convolution layer of the hm output head is replaced
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by dynamic convolution layer, which further improves detec-
tions of occluded objects, especially for pedestrians.

(2) For 3D multi-object tracking, the difference is that Center-
Track3D uses a cascaded data association algorithm based
on the 3D Kalman filter to make full use of the object’s 3D
information to match same objects more accurately
between adjacent frames. CenterTrack3D also mainly uses
the greedy matching algorithm to match the closest objects
between adjacent frames.

2 Related Work
2.1 Three-Dimensional Object Detection. Due to the devel-

opment of deep-learning networks, excellent object detectors have
developed rapidly in recent years [5–8]. 3D object detection also
has gradually received widespread attention and has made good
progress. CenterNet is not only an outstanding 2D object detector,
but after simple expansion, it can predict the depth and the orienta-
tion to estimate the complete 3D bounding box by feeding only 2D
images as input. There also are excellent 3D detectors which use
images and point cloud [9,10]. MV3D combines the image and
the top view and front view of point cloud to output the final 3D
object detection results [10].
In this paper, we use CenterTrack as a 3D multi-object tracker,

which builds on CenterNet and takes the prior tracking results as
additional input. Our method optimizes the input mode of the
previous-frame tracking results and replaces the ordinary convolu-
tion with dynamic convolution on the hm output head, which further
recover occluded objects

2.2 Three-Dimensional Multi-Object Tracking Frame-
work. In essence, 3D multi-object tracking (3DMOT) algorithm
is almost the same as 2D multi-object (2DMOT) algorithm, but
3DMOT tracks objects of interest in the form of 3D bounding
box. Nowadays, most of the mainstream 3DMOT stall follows
the tracking-by-detection framework. AB3DMOT achieves good
multi-object tracking results by tracking the accurate detections as
input and using the improved SORT based on 3D Kalman filter
as the matching algorithm [11,12]. JRMOT fuses 2D RGB image
and 3D point cloud as input, estimates the 3D bounding box of
objects of interest in each image, and then uses the joint probability
association network to match objects of adjacent frames [13]. 3DT
detects objects of interest in form of the 2D bounding box, estimates
their complete 3D bounding boxes, and then utilizes 3D information
and other cues to match objects [14].
The data association strategies of these methods are often very

complicated, or only consider the tracking of cars. In this paper,
our approach uses 3DKalman filter and 2DKalman filter to estimate
the state of prior objects’ 3D bounding box and 2D bounding box in
the current frame, and uses different metrics to track cars and pedes-
trians respectively. Specifically, we use Intersection-over-Union of
3D bounding box (3DIoU) as the first metric and the distance
between center points of 2D bounding boxes as the second metric
for cars and use the distance between center points of 2D bounding
boxes as the only metric for pedestrians. In addition, we utilize 3D
Kalman filter to track the missing prior pedestrians continuously.

3 Preliminaries
3.1 Framework. The overall framework of the multi-object

tracker CenterTrack3D proposed in this paper is shown in Fig. 1.
CenterTrack3D is improved by CenterTrack, which is developed
based on CenterNet. Thus, CenterTrack3D and CenterTrack are
all essentially an object detector with DLA-34 as the backbone
network. There are eight parallel output heads, namely, hm, wh,
reg, dep, dim, rot, amodel offset, and tracking, where tracking
head is used to predict the center offset between adjacent frames
in original CenterTrack. The remaining seven heads locate objects
of interest and predict 3D bounding box information in each

frame. The information is used in the process of object feature mod-
eling and data association to achieve continuous tracking of objects
of interest in each frame in the form of 3D bounding box.

3.2 Detection. Assuming that at time t, the current-frame
image is I(t), the previous-frame image is I(t−1), the heatmap
of the previous-frame tracked objects is H(t−1), current-frame
detections are D(t) = {(si, ci, pi, boxi, αi, dimi, loci, θi)}M−1

i=0 , and
previous-frame tracked objects are T (t−1) = {(si, ci, pi, boxi,
αi, dimi, loci, θi, idi)}N−1i=0 , where s∈ [0, 1] represents the detection
confidence score, c∈ {0, …, C− 1} represents the category to
which the object belongs, p∈ℝ2 represents the object center
point location, box∈ℝ4 represents 2D bounding box, and dim∈
ℝ3 represents 3D bounding box, α∈ [−π, π] represents the observa-
tion angle, loc∈ℝ3 represents the coordinate position of the 3D
object in the camera coordinate system, θ∈ [− π, π] represents
the rotation angle of the object around the y-axis in the camera coor-
dinates, and id∈ℤ represents the unique identity of the object.
In order to enhance the temporal coherence of the detected

objects in the continuous video sequence and improve the detection
ability of the occluded objects in the crowded scene, the original
CenterTrack takes the current-frame image I(t), the previous-frame
image I(t−1) and the heatmap of the previous-frame tracked detec-
tions H(t−1) together as input, and loads them into the network.
Where the heatmap of the previous-frame tracked detections
H(t−1) is obtained by distributing the previous-frame tracklets
T(t−1) on the single-channel heatmap through the Gaussian kernel
function. In this way, the network is made to perceive changes in
the scene, and the occluded object in the current frame can be
detected based on the relevant information of the previous frame.
The original CenterTrack first passes the current frame I(t), the

previous frame I(t−1) and H(t−1) through a convolutional layer,
respectively, to obtain three 383 × 1280 × 16 feature maps
Fcur img, F pre img, and F pre hm, and then Fcur img, F pre img, and
F pre hm uses a simple addition method for fusion (as shown by
the dotted line in Fig. 2), as shown in Eqs. (1)–(4)

Fcur img =Wcur img ⊗ I(t) (1)

F pre img =W pre img ⊗ I(t−1) (2)

F pre hm =W pre hm ⊗ H(t−1) (3)

F fuse = F pre hm + F pre img + Fcur img (4)

where W pre hm, W pre img, and Wcur img, respectively, represent the
corresponding convolution kernel of I(t), I(t−1), and H(t−1).

3.3 Loss Function. The hm output head of CenterTrack3D

generates a low-resolution heatmap Ŷ ∈ [0, 1]

W

R
×
H

R
× C

, and the
largest peak point in each 3 × 3 neighborhood of the heatmap is con-
sidered as an object center point p∈ℝ2 to locate objects of interest.
According to the center location, CenterTrack3D infers the object’s
required confidence, category, 2D bounding box, 3D bounding box,
and other information on other output heads. We train on the eight
output heads with the same loss function as CenterTrack [3]. The
following mainly introduces the loss function of hm and tracking
head, the loss functions of other heads will not be repeated in this
paper.
The hm head is trained by using the focal loss function [15], to

regress the object center location, as shown in Eq. (5):

Lk =
1
N

∑
xyc

(1 − Ŷxyc)
α
log (Ŷxyc) if Yxyc = 1

(1 − Yxyc)β(Ŷxyc)
α
log(1 − Ŷxyc) otherwise

{
(5)

where Y ∈ [0, 1]
W
R×

H
R×C represents the heatmap with ground-truth

object center points, Ŷ ∈ [0, 1]
W
R×

H
R×C represents the predicted
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heatmap, N represents the number of objects in an image, and α= 2
and β= 4 are the hyperparameters of focal loss. For each center
point p of category c, we use a Gaussian kernel function
Rq({ p0, p1, · · ·}) to render a Gaussian distribution peak point into
Y:,:,c, as shown in Eq. (6):

Rq({ p0, p1, · · ·}) =max
i

exp −
( pi − q)2

2σ2i

( )
(6)

where pi represents the center location of the i-th object in the
image, q∈ℝ2 represents the location on the heatmap Y, and the
Gaussian kernel σi is related to the object size.
The tracking head is trained by using the L1 loss function, to

regress the center offset between adjacent frames, as shown in
Eq. (7)

Ltracking =
1
N

∑N
i=1

op(t)i
− p(t−1)i − p(t)i
( )∣∣∣ ∣∣∣ (7)

where p(t−1)i and p(t)i are tracked ground-truth object points, op(t)i
is

the offset of object p(t)i between two adjacent frames.

3.4 Tracking. Assuming that the set of object center points in
the current frame is P(t) = { pi}

M−1
i=0 , and that in the previous frame is

P(t−1) = { pi}
N−1
i=0 . The original CenterTrack predicts a 2D offset

vector set O(t) = {oi}
M−1
i=0 ∈ R

W
R×

H
R×2 in tracking head based on

P(t)={pi}
M−1
i=0 . Through P(t)={pi}

M−1
i=0 and O(t)={oi}

M−1
i=0 ∈R

W
R×

H
R×2,

the current-frame center point location is estimated in the previous
frame I(t−1), and the calculation is shown in Eq. (8)

p̃(t−1)i = o(t)i + p(t)i (8)

The specific matching rules are as follows: (1) The set of
current-frame detections D(t) is sorted in descending order

according to the confidence score; (2) The distance dist(t)∈ℝM×N

between P̃
(t−1)

= { p̃i}
M−1
i=0 and P(t−1) = { pi}

N−1
i=0 is used as the mea-

surement, and greedy algorithm is used to match D(t) with the
closest T(t−1), where T(t−1) is tracklets in the previous frame. (3)
If the object in the current frame has no unmatched previous-frame
detection within the radius κ of its center point, the object is consid-
ered as a new tracklet, and a new ID is assigned to it. Where κ is
related to the width and height of 2D bounding box, and the calcu-
lation equation is shown in Eq. (9)

κ =
									
w2 + h2

√
(9)

4 Work for Improvements
4.1 Network Improvements. As for occlusion, exposure and

other environmental effects, even the appearance characteristics of
the same object are different between two adjacent frames. Thus,
the original network adds the tracking results of the previous frame
to the current frame for training and inference, so as to detect
objects of interest in the current frame more accurately. Considering
that this direct addition method of information fusion cannot fully
utilize the previous-frame image and tracklets, this paper introduces
an attention mechanism to optimize the way in which the previous-
frame image and the prior heatmap are added to the current-frame
image as the network input [16], as shown by the solid line in
Fig. 2. First, we calculate the corresponding attention maps of
F pre img, F pre hm, and |F pre img − Fcur img|, respectively, which are
Gpre img, Gcur img, and Gsub img, as shown in Eq. (10)

Gs = σ(Ws
att ⊗ Fs)|s∈{ pre img,pre hm,sub img} (10)

where ⊗ is a convolution operation and σ is a sigmoid activation
function. Ws

att predicts its importance by learning the feature itself,
and the sigmoid activation function maps the attention to the range
of 0 to 1. Finally, the fusion is done using Eq. (11)

Fig. 1 Block diagram of CenterTrack3D

Fig. 2 Block diagram of network input mode
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F fuse =
∑S

s G
s ⊙ Fs∑S
s G

s
+ Fcur img, S

∈ { pre img, pre hm, sub img} (11)

where ⊙ represents elementwise multiplication.
In addition, since objects of interest in the video sequence are all

shape-changing, and the receptive field of the ordinary convolu-
tional layer is always rectangular, the ordinary convolutional
layer cannot adapt to objects whose shapes often change.
However, the dynamic convolution layer can add an offset to the
position of each sampling point of the ordinary convolution
kernel during the convolution operation, so as to obtain the recep-
tive field that adapts to objects of different shapes. Therefore, in
hm head of the network which predicts center points of objects of
interest in images, the second convolutional layer is replaced with
a dynamic convolutional layer, which can generate a heatmap
with richer semantic information to better predict and locate
objects of interest in the image, especially for pedestrians. The
details are shown in the dotted ellipse in Fig. 1.

4.2 Association Algorithm Based on Three-Dimensional
Kalman Filter.Since the association algorithm of original Center-
Track mostly focuses on 2D object and ignores 3D information
and does not optimize for the 3D multi-object tracking task, this
paper proposes a cascade association algorithm based on 3D
Kalman filter to solve the problem that the original association algo-
rithm does not make full use of the 3D information of detections.
The algorithm flow is shown in Fig. 3.
As shown in Fig. 3, the cascade tracking algorithm based on 3D

Kalman filter has three matching steps. First, we match the reliable
detections in the current frame with tracklets in the previous frame,
where the reliable detections represent high confidence detections.
Second, we match the unmatched prior tracklets with objects with
a lower confidence score in the current frame to alleviate the
problem of missing detections in the current frame. If a low confi-
dence detection in current frame is matched with an unmatched
prior tracklet, it will be incorporated into existing trajectories, oth-
erwise it will be considered as a false detection and abandoned.
Third, we use 3D Kalman filter to continuously track tracklets
that have not been matched in the previous frame, and recover
some of objects that were missed in the current frame. Note that
the tracking head is only used for training and not used in inference
time, and 2D Kalman filter is used to predict the center offset
between adjacent frames in the paper. This is because the experi-
mental results show that tracking head has certain improvement
on detections, and 2D Kalman filter can predict more accurate
center offset than tracking head. The details are as follows:

(1) The current-frame detections D(t) is divided into two
groups according to the confidence threshold ϑ = 0.4, and

the 3D Kalman filter and 2D Kalman filter are used
to predict the state of previous-frame objects T (t−1) =
{(st−1i , ct−1i , pt−1i , boxt−1i , αt−1i .dimt−1

i , loct−1i , θt−1i )}N−1i=0 in the
current frame and the predicted tracklets are Pred(t−1)T =
{(st−1i , ct−1i , pt−1i , boxt−1i , αt−1i .dimt−1

i , loct−1i , θt−1i )}N−1i=0 . We
formulate the state of an object 3D bounding box as a
10-dimensional vector X1 = (x, y, z, θ, l, w, h, ẋ, ẏ, ż) in the
vehicle camera coordinate system and the state of an object
2D bounding box as a seven-dimensional vector X2 =
(u, v, a, r, u̇, v̇, ȧ) in the image pixel coordinate system,
where the additional variables ẋ, ẏ, ż in vector X1 represent
the object velocity in the 3D space and the vector X2 contains
the bounding box center position (u, v), area of 2D bounding
box a, aspect ratio r, and their respective velocities in image
coordinates. The predicted states of 2D bounding box and
3D bounding box of previous-frame tracklets in the current
frame are X̃1 = (x + ẋ, y + ẏ, z + ż, θ, l, w, h, ẋ, ẏ, ż) and
X̃2 = (u + u̇, v + v̇, a + ȧ, r, u̇, v̇, ȧ). In the following match-
ing process, the 3DIoU refers to the Intersection-over-Union
of three-dimensional volume between the predicted 3D bound-
ing box state of previous-frame objects in the current frame and
the 3D bounding box state of current-frame objects. The dis-
tance of center locations refers to the distance between the pre-
dicted center location state of previous-frame objects and center
location of current-frame objects.

(2) The first matching (step 1): the matching process uses greedy
algorithm. We use 3DIoU as the first measurement and the
distance between center locations as the second measurement
for cars. For example, when using 3DIoU as the measure-
ment results in no suitable unmatched tracklets, distance
between center locations will be used as the measurement.
For pedestrians, distance between center locations is used
as the only measurement. For the unmatched detection
unD(t)

>0.4 in the current frame, a 3D Kalman filter model,
2D Kalman filter model and a new tracklet will be created.
In the paper, we initialize 3D Kalman filter model and 2D
Kalman filter model of the unmatched detection unD(t)

>0.4
with zero velocity for ẋ, ẏ, ż, u̇, v̇, ȧ.

(3) The second matching (step 2): It mainly deals with the
previous-frame unmatched tracklets unT(t−1). The detections
D(t)

≤0.4 whose confidence is less than or equal to 0.4 are
matched with predicted tracklets Pred unT (t−1) which are
not matched in step 1 process. For these D(t)

≤0.4, they will
be merged into the existing tracklets if it satisfies the follow-
ing two conditions: (1) the center location distance between
it and some objects in the previous frame is less than 500
pixels; (2) the 3DIoU between it and any object in the
current frame is 0; and (3) it is not close to the edges of
the image, which means predicted objects should be more

Fig. 3 Cascaded data association algorithm based on 3D Kalman filter
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than 20 pixels away from the edges of the image in this
paper.

(4) The third matching (step 3): It mainly deals with prior track-
lets that have not been matched in step 1 and step 2 process.
For these Pred unT (t−1), it will be merged into the existing
tracklets if it satisfies the following four conditions: (1) the
3DIoU between it and any object in the current frame is
less than 0.3; (2) it is not close to the edges of the image;
(3) Step 3 can only be used consecutively once for the
same object; (4) it has been successfully matched at least
three times before.

(5) For the matched detections in the current frame, their 3D
Kalman filter and 2D Kalman filter status will be updated.
Besides, prior tracklets which have not been matched in
step 1, step 2, and step 3 process are considered to have dis-
appeared in the current frame, and their tracklets are
terminated.

In the data association algorithm, the 3DIoU is used as the first
measurement for cars. This is because compared with IoU,
3DIoU has depth information and can better distinguish objects
whose 2D bounding boxes which locate at different depths, as
shown in Fig. 4. In Fig. 4(a), 2D bounding boxes of object A2
and object A3 overlap from the perspective of the camera’s z-axis
but locate at different depths, while object A1 and object A2 are
all overlap in the form of 2D bounding box or 3D bounding box.
In Figs. 4(b) and 4(c), bounding boxes B1 and bounding boxes
B2 are the location of previous frame objects in the current
frame, and bounding boxes B3 and bounding boxes B4 are the loca-
tion of current frame objects, where Object B1 and Object B3 are
the same object, and Object B2 and Object B4 are the same
object. Object B1 and object B4 are almost nonintersecting when
they are represented by 3D bounding box, but there is a certain
area of overlap between object B1 and object B4 when they are
represented by 2D bounding box.
In addition, the three-dimensional shape and position of cars

between adjacent frames also change little, so it is suitable to use
the 3D bounding box to describe its feature. However, for pedestri-
ans, due to the swing of their arms and changes in their steps, the
three-dimensional shape of pedestrians changes significantly
between adjacent frames, so 3DIoU is not suitable as the measure-
ment to match pedestrians.

5 Experiment and Result Analysis
5.1 Experimental Configuration and Dataset. The experi-

mental configuration in this paper is shown in Table 1. The

dataset uses the public KITTI tracking benchmark dataset, and its
train set and test set have 21 and 29 video sequences, respectively.
The dataset is collected by a camera mounted on a car, mainly to
detect and track cars and pedestrians, and provide corresponding
category, ID, 2D bounding box and 3D bounding box and other
information. This paper only evaluates cars and pedestrians, so
the eight different categories originally labeled in the dataset are
merged into three categories. Specifically, Car and Van are
merged into the “Car” category, and Pedestrian and Person are
merged into the “Pedestrian” category. The “Cyclist” category is
kept, and “Truck,” “Tram,” “DontCare” and “Misc” category is
deleted. During the experiment, 21 video sequences in the train
set were divided into train set and verification set at a ratio of 1:1.
The validation set is used for ablation experiments to evaluate Cen-
terTrack3D proposed in this paper.

5.2 Evaluation Metrics. The metrics used to evaluate the
multi-object tracking algorithm are shown in Table 2, where
MOTA and MOTP evaluate the overall performance of the multi-
object tracking algorithm, and mostly tracked (MT), mostly lost
(ML), ID-switch (IDS), and fragmentations (FRAG) evaluate the
tracker’s efficiency in assigning the correct ID to the object [17].

Fig. 4 Schematic diagram of 3D perspective scene: (a) schematic diagram of 3D bounding box, (b) schematic diagram
of 3D multi-object tracking results, and (c) schematic diagram of 2D multi-object tracking results

Table 1 Experimental configuration

Item CPU
Computing
memory GPU System

Content Intel
i5-9400F

11GB NVIDIA GTX
1080Ti

Ubuntu16.04

Table 2 Evaluation metrics used for multiple object tracking

Metrics Better Perfect Description

MOTA ↑ 100% Multiple object tracking accuracy
MOTP ↑ 100% Multiple object tracking precision
MODA ↑ 100% Multiple object detection accuracy
MODP ↑ 100% Multiple object detection precision
MT ↑ 100% Mostly tracked targets
ML ↓ 0 Mostly lost targets
IDS ↓ 0 Identity switches
Frag ↓ 0 Fragmentations

Journal of Autonomous Vehicles and Systems APRIL 2021, Vol. 1 / 021004-5



5.3 Training Process. The training process of CenterTrack3D
is basically the same as that of CenterNet, using multi-task learning
to train all prediction heads. This paper uses the model trained by
CenterNet on the nuScenes dataset to fine-tune CenterTrack3D on
the KITTI tracking benchmark dataset. The model trained by

CenterNet on the nuScenes dataset is provided by authors of Center-
Track [3].
The main problem in training CenterTrack3D is to input the prior

heatmap H(t−1) that simulates a real scene. At inference time, the
heatmap may contain any number of missing objects, wrongly

Table 3 Comparison of experimental results with other multi-object tracking algorithms on test set of KITTI tracking benchmark
dataset (“car” class)

Method Time MOTA MOTP MODA MODP MT ML IDs Frag

AB3DMOT [12] 0.47 ms 83.84% 85.24% 83.86% 88.25% 66.92% 11.38% 9 224
TuSimple [18] 60 ms 86.62% 83.97% 87.48% 87.38% 72.46% 6.77% 293 501
Quasi-Dense [19] 70 ms 85.76% 85.01% 86.03% 88.06% 69.08% 3.08% 93 617
JRMOT [13] 70 ms 85.70% 85.48% 85.98% 88.42% 71.85% 4.00% 98 372
CenterTrack [4] 60 ms 87.70% 85.13% 88.70% 87.99% 75.38% 3.69% 345 655
CenterTrack3D 65 ms 88.75% 85.05% 89.20% 87.89% 77.85% 4.00% 156 400

Note: Bold fonts are the best values for each measurement.

Table 4 Comparison of experimental results with other multi-object tracking algorithms on test set of KITTI tracking benchmark
dataset (“pedestrian” class)

Method Time MOTA MOTP MODA MODP MT ML IDs Frag

AB3DMOT [11] 0.47 ms 39.26% 64.87% 40.37% 90.27% 16.84% 41.84% 170 940
TuSimple [17] 60 ms 58.15% 71.93% 58.74% 91.37% 30.58% 24.05% 138 818
Quasi-Dense [18] 70 ms 56.81% 73.99% 57.91% 91.75% 31.27% 18.90% 254 1121
JRMOT [12] 70 ms 46.33% 72.54% 47.82% 91.78% 23.37% 28.87% 345 1111
CenterTrack [3] 60 ms 56.72% 73.38% 57.56% 91.77% 34.36% 21.65% 194 884
CenterTrack3D 65 ms 59.40% 73.79% 60.04% 91.78% 42.61% 18.90% 150 812

Note: Bold fonts are the best values for each measurement.

Fig. 5 3D Multi-object tracking results of four consecutive frames in KITTI tracking validation set
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localized objects, or false positives, but these errors will not appear
in the ground-truth annotations of the dataset. Therefore, this paper
simulates these three errors during the training process. First, we
perform local dithering by adding Gaussian noise at the center
point of each tracked object in the previous frame, as shown in
Eq. (12). Second, we randomly add false positives near the ground-
truth center point with probability λfp. Third, we simulate false neg-
atives by randomly discarding detections with probability λfn. These
three augmentations can effectively enhance the robustness of Cen-
terTrack3D

(x′, y′) = (x + r × λ jt × wi, y + r × λ jt × hi) (12)

where (x, y) is the ground-truth object center point, (x′, y′) is the
center point after adding Gaussian noise, r is sampled from a Gauss-
ian distribution, (w, h) is the width and height of the corresponding
ground-truth center point.
During training and testing, we keep the original input resolution

1280 × 384. The hyperparameters are set to λfp= 0.1 and λfn= 0.2,
and the output confidence threshold is ς = 0.3.
In addition, during training, I(t−1) and H(t−1) do not need to be

sampled from time t− 1, and randomly sample from all frames k
∈ [Mf− t, Mf+ t] to avoid overfitting, where Mf = 3 is a
hyperparameter.

5.4 Main Results. This paper retrains CenterTrack3D on all
train sets of the KITTI tracking benchmark data set and evaluates
it on the test set. The results are shown in Tables 3 and 4, where
the experimental results of the original CenterTrack are obtained

by implementing a 3D multi-object tracking experiment on the
test set. Note that the experimental results of the original Center-
Track on the KITTI website are obtained by implementing a 2D
multi-object tracking experiment on the test set. The detection
results are shown in Fig. 5.
On the test set, CenterTrack3D runs at 65 ms, yields 88.75%

MOTA for cars and 59.40% MOTA for pedestrians. Compared
with the original CenterTrack, most metrics have improved signifi-
cantly. In addition, the results also show that the performance of
CenterTrack3D is more competitive than the methods that have
been published on the KITTI rankings (Tables 3 and 4). In
summary, our proposed method has priority performance on 3D
multi-object tracking tasks.

5.5 Ablation Experiment. The main contributions of this
paper to the improvement of the original CenterTrack are as
follows: (1) The previous-frame image and the heatmap of previous-
frame tracklets are added to the current-frame image as the network
input with the idea of the attention mechanism; (2) The second con-
volutional layer of the hm output head is replaced with dynamic con-
volution layer; and (3) The original data association algorithm is
replaced with a cascaded data association algorithm based on 3D
Kalman filter. The following ablation experiments are performed
on these three contributions, and the experimental results are
shown in Tables 5 and 6. Note that the experimental results are the
best results of training in the last ten epochs.
It can be seen from Tables 5 and 6 that C1 and C2 (shown as in

Tables 5 and 6) both can improve the original multi-object tracker

Table 5 Ablation experiment results on the verification set of KITTI tracking validation set (“car” class)

Oa C1b C2c S1d S2e S3f MOTA MOTP MODA MODP MT ML IDs Frag

✔ 88.27% 87.46% 88.90% 90.82% 85.97% 2.15% 68 158
✔ 88.01% 87.21% 89.27% 90.76% 85.97% 2.15% 138 227

✔ 88.38% 87.21% 88.81% 90.65% 87.05% 1.80% 47 137
✔ ✔ 87.83% 87.57% 89.05% 90.91% 86.69% 1.43% 133 220
✔ ✔ ✔ 88.75% 87.57% 89.05% 90.91% 86.69% 1.43% 33 125
✔ ✔ ✔ ✔ 89.15% 87.44% 89.42% 90.84% 87.76% 1.43% 30 107
✔ ✔ ✔ ✔ ✔ 89.33% 87.32% 89.63% 90.76% 88.48% 1.43% 33 105

Note: Bold fonts are the best values for each measurement.
aThe original multi-object tracker CenterTrack.
bContribution one which is that the previous-frame image and the heatmap of previous-frame tracklets are added to the current-frame image as the network
input with the idea of the attention mechanism.
cContribution two which is that The second convolutional layer of the hm output head is replaced with dynamic convolution layer.
dStep 1 in the cascaded data association algorithm based on 3D Kalman filter.
eStep 2 in the cascaded data association algorithm based on 3D Kalman filter.
fStep 3 in the cascaded data association algorithm based on 3D Kalman filter.

Table 6 Ablation experiment results on the verification set of KITTI tracking validation set (“pedestrian” class)

Oa C1b C2c S1d S2e S3f MOTA MOTP MODA MODP MT ML IDs Frag

✔ 69.86% 78.52% 70.52% 94.43% 50.00% 15.48% 30 151
✔ 70.68% 77.98% 72.60% 94.37% 51.19% 11.90% 86 209

✔ 70.23% 78.41% 71.30% 94.42% 52.38% 15.48% 48 158
✔ ✔ 70.63% 78.24% 71.77% 94.25% 58.33% 10.71% 51 171
✔ ✔ ✔ 71.01% 78.24% 71.77% 94.25% 58.33% 10.71% 34 159
✔ ✔ ✔ ✔ 72.15% 78.06% 72.59% 94.08% 60.71% 11.90% 20 134
✔ ✔ ✔ ✔ ✔ 72.21% 78.02% 72.78% 94.07% 60.71% 11.90% 25 135

Note: Bold fonts are the best values for each measurement.
aThe original multi-object tracker CenterTrack.
bContribution one which is that the previous-frame image and the heatmap of previous-frame tracklets are added to the current-frame image as the network
input with the idea of the attention mechanism.
cContribution two which is that the second convolutional layer of the hm output head is replaced with dynamic convolution layer.
dStep 1 in the cascaded data association algorithm based on 3D Kalman filter.
eStep 2 in the cascaded data association algorithm based on 3D Kalman filter.
fStep 3 in the cascaded data association algorithm based on 3D Kalman filter.
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CenterTack, especially MOTA. In addition, step 1, step 2, and step
3 in the cascaded data association algorithm based on 3D Kalman
filter all have a great effect on the improvement of the 3D multi-
object tracking, which verifies the 3DIoU is more suitable for
matching cars than distance between center points and continuous
tracking of missing prior tracklets can improve the missing pedes-
trians. In brief, the improvement of network input mode and hm
output head improve detections in each frame, and the 3D
Kalman filter-based cascaded data association algorithm proposed
in this paper is particularly suitable for solving the problem of 3D
object association.
In addition, it can be seen from the ablation experiments in Tables

5 and 6 that some improvement steps seem to decrease some exper-
imental metrics a little. For example, improvements of C1 and C2
will decrease some metrics a little, such as IDs and Frag. This is
because these two improvements reduce the accuracy of the center
point offset between two adjacent frames predicted by tracking
head. This problem can be solved by our proposed cascaded data
association algorithm based on 3D Kalman filter. However, the
second and third steps of the cascadematching strategy will decrease
metricsMOTP andMODP a little, because these two matching steps
will add a small number of false detections to existing tracking trajec-
tories. This is worth it, because MOTP and MODP have only
decreased by less than 0.2%, but other metrics have improved signif-
icantly. For example,MOTA,MODA, andMTof “Car” category has
increased bymore than 0.6%, andMOTA,MODA, andMTof pedes-
trians has increased by more than 1%.

6 Conclusion and Future Work
This paper proposes an efficient and simple 3D multi-object

tracking algorithm, CenterTrack3D, to solve the problem that Cen-
terTrack ignores the 3D information of objects in the 3D multi-
object tracking task. CenterTrack3D makes full use of the 3D infor-
mation to match the same object more accurately between adjacent
frames and can track missed tracklets in the current frame continu-
ously. From the experimental results, the method proposed in this
paper is very competitive on the KITTI tracking benchmark
dataset. However, since this paper does not use laser point cloud
data, only RGB images are used to estimate the depth of the
object and predict the 3D bounding box of objects of interest in
each frame of image. Therefore, we can study the fusion of laser
point cloud and RGB image to further improve 3D multi-object
detection and tracking in the future work.

Acknowledgment
We are grateful for the KITTI dataset produced jointly by Karls-

ruher Institut für Technologie and Toyota American Institute of
technology.

Conflict of Interest
There are no conflicts of interest.

References
[1] Gioele, C., Francisco, L. S., Siham, T., Luigi, T., and Francisco, H., 2020, “Deep

Learning in Video Multi-Object Tracking: A Survey,” Neurocomputing, 381(C),
pp. 61–88.

[2] Punchihewa, Y. G., Vo, B. T., Vo, B. N., and Kim, D. Y., 2018, “Multiple Object
Tracking in Unknown Backgrounds With Labeled Random Finite Sets,” IEEE
Trans. Signal Process., 66(11), pp. 3040–3055.

[3] Zhou, X., Koltun, V., and Krhenbühl, P., 2020, “Tracking Objects
as Points,” European Conference on Computer Vision, Springer, Cham,
pp. 474–490.

[4] Zhou, X., Wang, D., and Krhenbühl, P., 2019, “Objects as Points,” preprint
arXiv:1904.07850v1.

[5] Ren, S., He, K., Girshick, R., and Sun, J., 2015, “Faster r-cnn: Towards
Real-Time Object Detection With Region Proposal Networks,” IEEE Trans.
Pattern Anal. Mach. Intell., 39(6), pp. 1137–1149.

[6] Redmon, J., and Farhadi, A., 2018, “Yolov3: An Incremental Improvement,” pre-
print arXiv:1804.02767.

[7] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., and Berg,
A. C., 2016, “Ssd: Single Shot Multibox Detector,” The 14th European
Conference on Computer Vision, Springer, Cham, pp. 21–37.

[8] Bochkovskiy, A., Wang, C. Y., and Liao, H. Y. M., 2020,
“YOLOv4: Optimal Speed and Accuracy of Object Detection,” preprint
arXiv:2004.10934.

[9] Ku, J., Mozifian, M., Lee, J., Harakeh, A., and Waslander, S. L., 2018, “Joint
3d Proposal Generation and Object Detection From View Aggregation,” 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Spain, pp. 1–8.

[10] Chen, X., Ma, H., Wan, J., Li, B., and Xia, T., 2017, “Multi-View 3D Object
Detection Network for Autonomous Driving,” Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI,
pp. 1907–1915.

[11] Bewley, A., Ge, Z., Ott, L., Ramos, F., and Upcroft, B., 2016, “Simple Online and
Realtime Tracking,” 2016 IEEE International Conference on Image Processing
(ICIP), Phoenix, AZ, pp. 3464–3468.

[12] Weng, X., Wang, J., Held, D., and Kitani, K., 2020, “AB3DMOT: A Baseline for
3D Multi-Object Tracking and New Evaluation Metrics,” preprint
arXiv:2008.08063.

[13] Shenoi, A., Patel, M., Gwak, J., Goebel, P., Sadeghian, A., Rezatofighi, H., and
Savarese, S., 2020, “JRMOT: A Real-Time 3D Multi-Object Tracker and a
New Large-Scale Dataset,” preprint arXiv:2002.08397.

[14] Hu, H. N., Cai, Q. Z., Wang, D., Lin, J., Sun, M., Krahenbuhl, P., and Yu, F.,
2019, “Joint Monocular 3D Vehicle Detection and Tracking,” Proceedings of
the IEEE International Conference on Computer Vision, Seoul, South Korea,
pp. 5390–5399.

[15] Lin, T. Y., Goyal, P., Girshick, R., He, K., and Dollár, P., 2017, “Focal Loss for
Dense Object Detection,” Proceedings of the IEEE International Conference on
Computer Vision, Venice, Italy, pp. 2980–2988.

[16] Zhang, W., Zhou, H., Sun, S., Wang, Z., Shi, J., and Loy, C. C., 2019, “Robust
Multi-Modality Multi-Object Tracking,” Proceedings of the IEEE International
Conference on Computer Vision, Seoul, South Korea, pp. 2365–2374.

[17] Bernardin, K., and Stiefelhagen, R., 2008, “Evaluating Multiple Object Tracking
Performance: the CLEAR MOT Metrics,” EURASIP J. Image Video Process.,
2008, pp. 1–10.

[18] Choi, W., 2015, “Near-online Multi-Target Tracking With Aggregated Local
Flow Descriptor,” Proceedings of the IEEE International Conference on
Computer Vision, Santiago, Chile, pp. 3029–3037.

[19] Pang, J., Qiu, L., Chen, H., Li, Q., Darrell, T., and Yu, F., 2020,
“Quasi-Dense Similarity Learning for Multiple Object Tracking,” preprint
arXiv:2006.06664.

021004-8 / Vol. 1, APRIL 2021 Transactions of the ASME

10.1016/j.neucom.2019.11.023
10.1109/TSP.2018.2821650
10.1109/TSP.2018.2821650
10.1109/TPAMI.2016.2577031
10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.1109/ICIP.2016.7533003
http://dx.doi.org/10.1109/ICIP.2016.7533003
http://dx.doi.org/10.1155/2008/246309

	1  Introduction
	2  Related Work
	2.1  Three-Dimensional Object Detection
	2.2  Three-Dimensional Multi-Object Tracking Framework

	3  Preliminaries
	3.1  Framework
	3.2  Detection
	3.3  Loss Function
	3.4  Tracking

	4  Work for Improvements
	4.1  Network Improvements
	4.2  Association Algorithm Based on Three-Dimensional Kalman Filter

	5  Experiment and Result Analysis
	5.1  Experimental Configuration and Dataset
	5.2  Evaluation Metrics
	5.3  Training Process
	5.4  Main Results
	5.5  Ablation Experiment

	6  Conclusion and Future Work
	 Acknowledgment
	 Conflict of Interest
	 References

